Learning Connective-based Word Representations for Implicit Discourse Relation Identification
نویسندگان
چکیده
We introduce a simple semi-supervised approach to improve implicit discourse relation identification. This approach harnesses large amounts of automatically extracted discourse connectives along with their arguments to construct new distributional word representations. Specifically, we represent words in the space of discourse connectives as a way to directly encode their rhetorical function. Experiments on the Penn Discourse Treebank demonstrate the effectiveness of these task-tailored representations in predicting implicit discourse relations. Our results indeed show that, despite their simplicity, these connective-based representations outperform various off-the-shelf word embeddings, and achieve state-of-the-art performance on this problem.
منابع مشابه
Comparing Word Representations for Implicit Discourse Relation Classification
This paper presents a detailed comparative framework for assessing the usefulness of unsupervised word representations for identifying so-called implicit discourse relations. Specifically, we compare standard one-hot word pair representations against low-dimensional ones based on Brown clusters and word embeddings. We also consider various word vector combination schemes for deriving discourse ...
متن کاملImproving Implicit Discourse Relation Recognition with Discourse-specific Word Embeddings
We introduce a simple and effective method to learn discourse-specific word embeddings (DSWE) for implicit discourse relation recognition. Specifically, DSWE is learned by performing connective classification on massive explicit discourse data, and capable of capturing discourse relationships between words. On the PDTB data set, using DSWE as features achieves significant improvements over base...
متن کاملPredicting Implicit Discourse Relation with Multi-view Modeling and Effective Representation Learning
Discourse relations between two text segments play an important role in many natural language processing (NLP) tasks. The connectives strongly indicate the sense of discourse relations, while in fact, there are no connectives in a large proportion of discourse relations, i.e., implicit discourse relations. The key for implicit relation prediction is to correctly model the semantics of the two d...
متن کاملImplicit Discourse Relation Classification via Multi-Task Neural Networks
Without discourse connectives, classifying implicit discourse relations is a challenging task and a bottleneck for building a practical discourse parser. Previous research usually makes use of one kind of discourse framework such as PDTB or RST to improve the classification performance on discourse relations. Actually, under different discourse annotation frameworks, there exist multiple corpor...
متن کاملCross-lingual Discourse Relation Analysis: A corpus study and a semi-supervised classification system
We present a cross-lingual discourse relation analysis based on a parallel corpus with discourse information available only for one language. First, we conduct a corpus study to explore differences in discourse organization between Chinese and English, including differences in information packaging, implicit/explicit discourse expression divergence, and discourse connective ambiguities. Second,...
متن کامل